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CP-263,114 (1) is a fungal metabolite that was isolated1,2 as
part of a program to identify inhibitors of Ras farnesyltransferase3

and squalene synthase4 (Figure 1). It has been proposed that1
is a member of the nonadride class of natural products; in
particular, its structural similarity to glaucanic acid (2) was
noted.1b,5 Inspection of the two structures suggests that transan-
nular bond formation between C10 and C26 to generate the core
skeleton of 1 may be feasible from a nine-membered-ring
intermediate. This paper details a new bicyclic ring-forming
reaction involving a transannular cyclization that has resulted in
a rapid, stereospecific synthesis of the CP-263,114 core structure.

The synthetic plan for assembling the nine-membered-ring
enolate and its transannular acylation is outlined in Scheme 1. It
was envisaged that addition of a vinyl organometallic (4) to
â-ketoester3 would generate alkoxide5 that, following an anion-
accelerated oxy-Cope rearrangement, would lead to nine-membered-
ring enolate6. Transannular enolate acylation of intermediate6
to afford 7, the core structure of1, would represent a reaction
similar to the proposed C10 f C26 biosynthetic cyclization.1b

The synthesis was initiated (Scheme 2) by treatment of
vinylstannane96 with Pb(OAc)4 (CHCl3, 25 °C) followed by
exposure of the intermediate vinyllead reagent toâ-ketoester8

(CHCl3, pyridine, 0-25 °C) to deliver ketone10 in 51% yield as
reported by Pinhey.7 (Z)-1-Propenylmagnesium bromide (11) was
added to ketone10 at -78 °C (THF) and allowed to warm to
room temperature. We were gratified to discover that compound
13, the bicyclo[4.3.1]deca-1(9)-ene ring system of CP-263,114,
could be isolated in 65% yield. Apparently the synthetic plan
depicted in Scheme 1 had directly afforded the CP-263,114 core
structure and only the cis (C9-C17) diastereomer was generated
in this reaction.8 Interestingly, only magnesium-based reagents
result in the formation of the bicyclo[4.3.1]deca-1(9)-ene ring
system. The analogous Li and Ce(III)-based nucleophiles afforded
compounds containing a nine-membered ring;9 however, products
resulting from transannular acylation were not detected.

The stereospecificity of the bicyclization reaction was tested
by exposure of ketone10 to (E)-1-propenylmagnesium bromide
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(12) (THF-PhCH3, -78 to 25°C).10 Again, the bicyclic core
structure of1 could be isolated. However, the major product
(14) displayed a trans relationship between C9 and C17.8 The
relative stereochemistry of the C9 and C17 substituents in14
corresponds to the observed stereochemistry of the side chains
of CP-263,114 (1). In addition to the major product (14) obtained
with (E)-1-propenylmagnesium bromide (12), nine-membered-
ring products were isolated.9 To explore vinyl Grignard reagents
which would deliver functionality suitable for construction of the
fully elaborated C9 side chain of1, cyclopentanone10was treated
with (E)-vinyl Grignard 15. The stereospecificity of the bicy-
clization reaction remained consistent as bicycle16 was isolated
in 64% yield displaying the natural stereochemistry at C9 and
C17.

A mechanistic and stereochemical interpretation of this process
is provided in Scheme 3. It has been demonstrated that 2-alkyl-
â-ketoesters related to10 undergo highly diastereoselective anti
additions via chelated intermediates similar to17.11 As a result,
it is reasonable to assume anti addition of a vinyl Grignard reagent
to 17 generating magnesium alkoxide18. An anion-accelerated
oxy-Cope rearrangement of18 through a chair transition state
would afford thetrans,trans-1,5-cyclononadiene intermediate19
as a bromomagnesium enolate.12,13 A chair transition state would
explain the stereochemical outcome observed with (Z)-1-prope-
nylmagnesium bromide (11), (E)-1-propenylmagnesium bromide
(12), and (E)-vinyl Grignard 15 (Scheme 2). As portrayed in
Scheme 3, addition of (E)-vinyl Grignard (15) to cyclopentanone
10 would place the silyloxyethyl group in a pseudoequatorial
position throughout the sigmatropic rearrangement, resulting in
direct formation of bicycle16. Addition of (Z)-1-propenylmag-
nesium bromide (11) to ketone 10 via a similar chelation-
controlled anti addition would place the methyl group in a
pseudoaxial position during the sigmatropic rearrangement, result-
ing in a cis relationship at C9 and C17 (10 f 13).

Evans et al. have reported that anion-accelerated oxy-Cope
rearrangements are further accelerated by appropriately positioned
carbanion stabilizing groups that promote C-C bond ionization.14

A similar effect, emanating from the methyl ester in18, may
explain the facile rearrangement of18 under conditions (0°C,
magnesium alkoxide)15 that would not normally be expected to
accelerate the [3,3]-sigmatropic rearrangement of a minimally
strained ring system.16,17 Following rearrangement, the nine-
membered-ring bromomagnesium enolate19 is well-positioned
to undergo transannular acylation to provide16, the core structure
of CP-263,114.18 The chair (trans-hydrindane) transition state
18, a critical feature in this process, provides control over four
stereochemical issues during the reaction: (1) C9 stereochemistry,
(2) C17 stereochemistry, (3) C15-C16 trisubstituted double bond
stereochemistry, and (4) the (Z) enolate geometry of19 that
facilitates the transannular Dieckmann-related cyclization. Isola-
tion of intermediates related to18 and 199 resulting from
premature quenching of the reaction at-78 and 0°C, respectively,
supports the mechanism depicted in Scheme 3.19

In summary, a new bicyclic ring-forming process has been
developed that results in direct construction of the CP-263,114
core system from readily available starting materials. In a single
transformation, four stereochemical issues (C9, C10, C17, and the
C15-C16 trisubstituted bridgehead double bond) have been ad-
dressed effectively while assembling the core system of1. The
reaction described above also demonstrates the feasability of a
C10-C26 transannular cyclization that has been proposed for the
biosynthesis of CP-263,114.1b Further utilization of this type of
reaction in conjunction with mechanistic investigations will be
conducted in efforts to synthesize CP-263,114 (1). This reaction
is also being explored in the context of other bicyclic and
polycyclic complex structures, beginning with readily available
starting materials.
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